1.1.1 Requirement: The organization has a documented Supply Chain Management (SCM) vision and strategy.

CHANGED Requirement: The organization has a documented Supply Chain Management (SCM) vision and strategy.

<table>
<thead>
<tr>
<th>Weight</th>
<th>Requirement /Criterion version 4</th>
<th>change</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAME</td>
<td>Requirement: The organization has a documented Supply Chain Management (SCM) vision and strategy.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.1.1.1 F2 There is a documented vision which includes an SCM strategy that supports the organization's overall business objectives. The strategy should incorporate customer requirements, continual improvement, and be reviewed at a planned interval.

CHANGED CHANGED CHANGED There is a documented vision which includes an SCM strategy that supports the organization's overall business objectives. The strategy should incorporate customer requirements, continual improvement, and be reviewed at a planned interval.

<table>
<thead>
<tr>
<th>Weight</th>
<th>Requirement /Criterion version 5</th>
<th>change</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAME</td>
<td>Requirement: The organization has a documented Supply Chain Management (SCM) vision and strategy.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.2.1 Requirement: There is a process in place to define SCM objectives. Objectives should be measurable, communicated, and understood within the organization.

CHANGED Requirement: There is a process in place to define SCM objectives. Objectives should be measurable, communicated, and understood within the organization.

1.2.1.1 F2 Objectives are documented, specific, measurable, achievable, realistic, timely, and consistent with the organization's SCM strategy.

CHANGED Objectives are documented, specific, measurable, achievable, realistic, timely, and consistent with the organization's SCM strategy.

<table>
<thead>
<tr>
<th>Weight</th>
<th>Requirement /Criterion version 4</th>
<th>change</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAME</td>
<td>Requirement: The organization should have key Performance Indicators (KPIs) defined and in place for key areas of the SCM process that support meeting both the organization's business objectives and customer requirements.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CHANGED Requirement: The organization should have key Performance Indicators (KPIs) defined and in place for key areas of the SCM process that support meeting both the organization's business objectives and customer requirements.

1.2.2.1 F2 Customer supply chain performance metrics (e.g. customer performance rating, ship-to-date, shipping discrepancies) shall be defined and measured.

CHANGED Requirement: Customer supply chain performance metrics (e.g. customer performance rating, ship-to-date, shipping discrepancies) shall be defined and measured.

1.2.2.2 F2 Supplier performance metrics (e.g. on-time delivery, receipt discrepancies, SLA accuracy) shall be defined and measured for suppliers, subcontractors, and service providers.

CHANGED Requirement: Supplier performance metrics (e.g. on-time delivery, receipt discrepancies, SLA accuracy) shall be defined and measured for suppliers, subcontractors, and service providers.

1.2.2.3 F2 Internal performance metrics (e.g. build-to-schedule, scrap/work, labor performance, labor effectiveness) shall be defined and measured.

CHANGED Requirement: Internal performance metrics (e.g. build-to-schedule, scrap/work, labor performance, labor effectiveness) shall be defined and measured.

1.2.2.4 F2 Metrics are defined to measure the quality of work within SCM processes that specifically include metrics monitored by the customer business process (e.g. incorrect/missing documentations, EDI system downtime, EDI error messages, packaging and labeling errors, on-time delivery, receipt discrepancies, SLA accuracy).

CHANGED Requirement: Metrics are defined to measure the quality of work within SCM processes that specifically include metrics monitored by the customer business process (e.g. incorrect/missing documentations, EDI system downtime, EDI error messages, packaging and labeling errors, on-time delivery, receipt discrepancies, SLA accuracy).

1.2.2.5 F2 Standard costs related to SCM processes (e.g. freight, labor, packaging) and extraordinary costs associated with deficiencies (e.g. premium freight, overtime, damaged containers) are identified and measured.

CHANGED Requirement: Standard costs related to SCM processes (e.g. freight, labor, packaging) and extraordinary costs associated with deficiencies (e.g. premium freight, overtime, damaged containers) are identified and measured.

1.2.2.6 F1 Where appropriate, inventory levels and/or turns are measured quarterly for inventory at each stage of the process (e.g. raw material, work-in-process [WIP], finished goods).

CHANGED Requirement: Where appropriate, inventory levels and/or turns are measured quarterly for inventory at each stage of the process (e.g. raw material, work-in-process [WIP], finished goods).

1.3.1 Requirement: The organization has a process in place to monitor, measuring, and analyzing SCM performance metrics throughout the supply chain (e.g. internal, customer, and sub-supplier) on a regular basis to ensure customer satisfaction and that the organization's objectives are met.

CHANGED Requirement: The organization has a process in place to monitor, measuring, and analyzing SCM performance metrics throughout the supply chain (e.g. internal, customer, and sub-supplier) on a regular basis to ensure customer satisfaction and that the organization's objectives are met.

1.3.1.1 F2 Performance against objectives is measured and reviewed with top management and communicated to all relevant personnel/functions/supply chain partners at planned intervals.

CHANGED Requirement: Performance against objectives is measured and reviewed with top management and communicated to all relevant personnel/functions/supply chain partners at planned intervals.

1.3.1.2 F2 Performance against objectives is measured and reviewed with top management and communicated to all relevant personnel/functions/supply chain partners at planned intervals.

CHANGED Requirement: Performance against objectives is measured and reviewed with top management and communicated to all relevant personnel/functions/supply chain partners at planned intervals.

1.3.2 F2 Graphical analysis tools (e.g. pareto charts) displaying historical and trend data are used to track key metrics over time.

REMOVED Requirement: There is a process in place to document, implement, and verify the effectiveness of preventative and corrective actions for any deficiency within the SCM process. The timing and status of the corrective actions are reviewed with management to prioritize actions and provide the necessary resources to achieve the results.

CHANGED Requirement: There is a process in place to document, implement, and verify the effectiveness of preventative and corrective actions for any deficiency within the SCM process. The timing and status of the corrective actions are reviewed with management to prioritize actions and provide the necessary resources to achieve the results.

1.3.3 F2 An effective corrective action process for supply chain issues prevents recurrence of the issue, thus avoiding extraordinary cost and improving customer satisfaction. Formally documenting the corrective action process provides a more controlled method for monitoring, implementing, and verifying the results of the corrective action.

CHANGED Requirement: An effective corrective action process for supply chain issues prevents recurrence of the issue, thus avoiding extraordinary cost and improving customer satisfaction. Formally documenting the corrective action process provides a more controlled method for monitoring, implementing, and verifying the results of the corrective action.
1.4.1.3 Requirement:
The organization shall have a documented process(ies) for problem solving including:
- a) defined approaches for various types and scales of problems (e.g. late/inaccurate ASNs, inaccurate shipments, BOM errors)
- b) containment, interim actions, and related activities necessary for control of nonconforming outputs
- c) root cause analysis, methodology used, analysis, and results
- d) implementation of systemic corrective actions, including consideration of the impact on similar processes
- e) verification of the effectiveness of implemented corrective actions
- f) reviewing and, where necessary, updating the appropriate documented information (e.g. update work instructions, train personnel, poka-yoke)
- g) lessons learned should be applied to other relevant processes

When the customer has specific prescribed processes, tools, or systems for problem solving, the organization shall use those processes, tools, or systems unless otherwise approved by the customer.

1.4.2 Requirement:
The organization shall have a documented process(ies) for problem solving including:
- a) defined approaches for various types and scales of problems (e.g. late/inaccurate ASNs, inaccurate shipments, BOM errors)
- b) containment, interim actions, and related activities necessary for control of nonconforming outputs
- c) root cause analysis, methodology used, analysis, and results
- d) implementation of systemic corrective actions, including consideration of the impact on similar processes
- e) verification of the effectiveness of implemented corrective actions
- f) reviewing and, where necessary, updating the appropriate documented information (e.g. update work instructions, train personnel, poka-yoke)
- g) lessons learned should be applied to other relevant processes

When the customer has specific prescribed processes, tools, or systems for problem solving, the organization shall use those processes, tools, or systems unless otherwise approved by the customer.

1.5.1.1 Requirement:
The organization has a process in place to identify root causes of inventory variance and implement corrective actions to prevent recurrence of the cause of variation.

1.5.1.2 Requirement:
The organization has a process in place to continually develop the relationship between partners in the supply chain.

1.5.1.3 Requirement:
The deployment of improvement activities throughout the supply chain is necessary in order to increase efficiency, reduce waste and cost, and improve overall customer satisfaction. The objective is to develop a continual improvement culture in all supply chain partners so that the resulting processes are lean, stable, and sustainable.

1.5.2.1 Requirement:
A formal method of analysis (e.g. SWOT analysis, Benchmarking) is used to assess all supply chain partners.

1.5.2.2 Requirement:
A formal method of analysis (e.g. SWOT analysis, Benchmarking) is used to assess all supply chain partners.

1.5.2.3 Requirement:
There is a process in place to continuously develop the relationship between partners in the supply chain.

1.5.3.1 Requirement:
There is a process in place to continuously develop working relationships with other functions within the organization in order to ensure that overall business objectives are satisfied.

1.5.3.2 Requirement:
There is a process in place to continuously develop working relationships with other functions within the organization in order to ensure that overall business objectives are satisfied.

1.6.1 Requirement:
There is a process in place to identify, record, and communicate emerging customer and supplier requirements.

1.6.2 Requirement:
There is a process in place to identify, record, and communicate emerging customer and supplier requirements.

1.6.3 Requirement:
There is a process in place to continually develop working relationships between internal customers and suppliers.

1.6.4 Requirement:
There is a process in place to continually develop working relationships between internal customers and suppliers.

1.7.1.1 Requirement:
The organizational structure recognizes the importance within the business of supply chain management, SCM interfaces, and information and physical flows.

1.7.1.2 Requirement:
The organizational structure recognizes the importance within the business of supply chain management, SCM interfaces, and information and physical flows.
The effectiveness of each job function and the current competency of each employee within the SCM department are documented with clearly defined roles and responsibilities, including internal, customer, industry, and government/international requirements. Job descriptions are reviewed regularly and updated as required.

2.4.1.2 The skills and qualifications required for each job function within the SCM department are documented.

OVERRIDE 2.4.2.2 Standardized work sheets are made available for all SCM personnel (e.g. a glossary understood by the personnel responsible to follow them, to include rates for operator safety).

2.4.4.1 The skills and qualifications required for each job function within the SCM department are documented.

REMOVED 2.4.4.2 No description identifies key responsibilities for key tasks.

2.4.3 Requirement: There is a process in place to identify current and required skills for each position and function within the SCM department.

OVERRIDE 2.4.4.3 There is a training management process in place. Training objectives are clearly defined within the SCM organization. Training plans are implemented and reviewed. There is a process in place for employees and training managers to monitor the effectiveness of training and development activities.

2.4.4 Requirement: A training and development plan exists for each employee in the SCM department.

REMOVED 2.4.4.4 Training plans are documented, regularly reviewed, and revised at a minimum once a year. The organization regularly assesses internal/external training requirements. The assessment process includes reviewing procedures, work instructions, business systems, industry resources, customer web sites, manuals, and contracts.

2.4.4 Requirement: A training and development plan exists for each employee in the SCM department.

SAME 2.4.4.2 A training and development plan exists for each employee including education opportunities. The organization regularly assesses development opportunities through internal, external, customer, and industry resources.

REMOVED 2.4.4.1 Individual development plans exist for each employee including education opportunities. The organization regularly assesses development opportunities through internal, external, customer, and industry resources.

2.4.4 Requirement: Individual development plans exist for each employee.

REMOVED 2.4.4.3 The skills and qualifications required for each job function within the SCM department are documented.

2.4.4.2 Job descriptions are reviewed regularly and updated as required.

MOVED 2.4.4.1 The skills and qualifications required for each job function within the SCM department are documented.

2.4.4 Requirement: The skills, methods, and responsibilities for each key task are clearly defined.

MOVED 2.4.4.3.1 The working environment should be in compliance with the customers corporate social responsibility guidelines.

2.4.4.2.1 The performance of regular reviews to ensure compliance with applicable safety and environmental requirements.

OVERRIDE 2.4.4.2.2 The performance of regular reviews to ensure compliance with all applicable health and safety requirements.

2.4.4 Requirement: The organization performs regular reviews to ensure compliance with applicable health and safety requirements.

REMOVED 2.4.4.2.2 Procedures and/or work instructions that employees can follow supports consistent, reliable, and repeatable results.

2.4.4 Requirement: Effective procedures and/or work instructions define the purpose of the task, the methods, the responsibilities, and the tools to be utilized.

2.4.4.4.3 The organization conducts reviews periodically and at key events (e.g. new product introduction, significant changes in customer demand) to ensure sufficient resources (e.g. space and equipment) are allocated for all SCM processes.

2.4.4.3 There is a process in place to formally review and communicate deviations from the supply plan (e.g. scheduling changes, quality issues) to all relevant parties (e.g. formal meetings, reports, documented alerts of part shortages).

2.4.4.2 The organization performs regular reviews to ensure compliance with applicable health and safety requirements.

OVERRIDE 2.4.4.1 The working environment should be in compliance with the customers corporate social responsibility guidelines.

2.4.4.1 The working environment should be in compliance with all levels of the organization.

2.4.4.1 The working environment should be in compliance with applicable social responsibility guidelines.

REMOVED 2.4.4.1 The working environment should be in compliance with all levels of the organization.

2.4.4.1 Job descriptions exist for each job function within the SCM department. Job descriptions are documented and controlled in procedures and/or work instructions for key elements of the supply chain, including interfacing with customers, suppliers, and other internal/external partners.

2.4.4.2 Requirement: The organization has a training development process in place. Training objectives are clearly defined within the organization. Training plans are implemented and reviewed. There is a process in place for employees and training managers to monitor the effectiveness of training and development activities.

REMOVED 2.4.4.2 Individual development plans exist for each employee including education opportunities. The organization regularly assesses development opportunities through internal, external, customer, and industry resources.

2.4.4.2 Individual development plans exist for each employee.

SANE 2.4.4.1 Individual development plans exist for each employee.

2.4.4 Requirement: A training and development plan exists for each employee including education opportunities. The organization regularly assesses development opportunities through internal, external, customer, and industry resources.

REMOVED 2.4.4.3 There is a training management process in place. Training objectives are clearly defined within the SCM organization. Training plans are implemented and reviewed. There is a process in place for employees and training managers to monitor the effectiveness of training and development activities.

2.4.4.4 Training plans are documented, regularly reviewed, and revised at a minimum once a year. The organization regularly assesses internal/external training requirements. The assessment process includes reviewing procedures, work instructions, business systems, industry resources, customer web sites, manuals, and contracts.

2.4.4.3 There is a training management process in place. Training objectives are clearly defined within the SCM organization. Training plans are implemented and reviewed. There is a process in place for employees and training managers to monitor the effectiveness of training and development activities.

2.4.4.2 Job training objectives are clearly defined within the SCM strategy, understood by all employees throughout, and reviewed and modified by management.

REMOVED 2.4.4.1 Job training objectives are clearly defined within the SCM strategy, understood by all employees throughout, and reviewed and modified by management.

2.4.4.2 Requirement: Training objectives are clearly defined within the SCM strategy, understood by all employees throughout, and reviewed and modified by management.

REMOVED 2.4.4.1 Requirement: Training objectives are clearly defined within the SCM strategy, understood by all employees throughout, and reviewed and modified by management.

2.4.4.1 Requirement: Training objectives are clearly defined within the SCM strategy, understood by all employees throughout, and reviewed and modified by management.

2.4.4.2 Requirement: A flexible and effective organization requires competent and knowledgeable personnel to support both internal and external customer-specific requirements.

SANE 2.4.4.1 Requirement: A flexible and effective organization requires competent and knowledgeable personnel to support both internal and external customer-specific requirements.

2.4.4.1 Requirement: There is a process in place to ensure that sufficient, fully trained employees are in place for all job functions including primary, new hires, contracts, third party, relief coverages, and back-up personnel.

2.4.4.2 Requirement: There is a process in place to ensure that sufficient, fully trained employees are in place for all job functions including primary, new hires, contracts, third party, relief coverages, and back-up personnel.

2.4.4.2 Requirement: There is a process in place to identify current and required skills for each position and function within the SCM department.

REMOVED 2.4.4.3 Requirement: There is a process in place to identify current and required skills for each position and function within the SCM department.

2.4.4.3 Requirement: There is a process in place to identify current and required skills for each position and function within the SCM department.

MOVED 2.4.4.3.1 Requirement: There is a process in place to identify current and required skills for each position and function within the SCM department.

2.4.4.3 Requirement: There is a process in place to identify current and required skills for each position and function within the SCM department.

REMOVED 2.4.4.3.1 There is a process in place to identify current and required skills for each position and function within the SCM department.

2.4.4.3.1 Requirement: There is a process in place to identify current and required skills for each position and function within the SCM department.

2.4.4.3 Requirement: There is a process in place to identify current and required skills for each position and function within the SCM department.

MOVED 2.4.4.3.1 Requirement: There is a process in place to identify current and required skills for each position and function within the SCM department.

2.4.4.3 Requirement: There is a process in place to identify current and required skills for each position and function within the SCM department.

MOVED 2.4.4.3.1 Requirement: There is a process in place to identify current and required skills for each position and function within the SCM department.

2.4.4.3 Requirement: There is a process in place to identify current and required skills for each position and function within the SCM department.

MOVED 2.4.4.3.1 Requirement: There is a process in place to identify current and required skills for each position and function within the SCM department.

2.4.4.3 Requirement: There is a process in place to identify current and required skills for each position and function within the SCM department.

MOVED 2.4.4.3.1 Requirement: There is a process in place to identify current and required skills for each position and function within the SCM department.

2.4.4.3 Requirement: There is a process in place to identify current and required skills for each position and function within the SCM department.

MOVED 2.4.4.3.1 Requirement: There is a process in place to identify current and required skills for each position and function within the SCM department.

2.4.4.3 Requirement: There is a process in place to identify current and required skills for each position and function within the SCM department.

MOVED 2.4.4.3.1 Requirement: There is a process in place to identify current and required skills for each position and function within the SCM department.

2.4.4.3 Requirement: There is a process in place to identify current and required skills for each position and function within the SCM department.

MOVED 2.4.4.3.1 Requirement: There is a process in place to identify current and required skills for each position and function within the SCM department.

2.4.4.3 Requirement: There is a process in place to identify current and required skills for each position and function within the SCM department.

MOVED 2.4.4.3.1 Requirement: There is a process in place to identify current and required skills for each position and function within the SCM department.

2.4.4.3 Requirement: There is a process in place to identify current and required skills for each position and function within the SCM department.

MOVED 2.4.4.3.1 Requirement: There is a process in place to identify current and required skills for each position and function within the SCM department.

2.4.4.3 Requirement: There is a process in place to identify current and required skills for each position and function within the SCM department.

MOVED 2.4.4.3.1 Requirement: There is a process in place to identify current and required skills for each position and function within the SCM department.

2.4.4.3 Requirement: There is a process in place to identify current and required skills for each position and function within the SCM department.

MOVED 2.4.4.3.1 Requirement: There is a process in place to identify current and required skills for each position and function within the SCM department.

2.4.4.3 Requirement: There is a process in place to identify current and required skills for each position and function within the SCM department.

MOVED 2.4.4.3.1 Requirement: There is a process in place to identify current and required skills for each position and function within the SCM department.
The organization periodically reviews, tests, and validates its back-up/contingency plans or...

2.5.1.2.2

The organization shall develop policies regarding supply chain cyber security threats. Typical...

3.2.1.2

The organization's risk assessment process prioritizes which processes should be documented...

3.1.1.1

The performance of the organization and SCM function is communicated to employees on a...

3.2.1.1

The SCM function shall formally participate in the Product Realization process (e.g. new product, engineering changes).

3.1.1.2

The appraisal process is also an opportunity for the manager and employee to discuss issues...

3.2.1.1

The performance of the organization and SCM function is communicated to employees on a...

3.1.1.2

The organization has a process to update its own SCM processes that require specific...

3.2.1.2

There shall be procedures and/or work instructions in place to ensure that the employee is...

3.1.1.3

The SCM function shall participate in the Product Realization process (e.g. new product, engineering changes) to ensure that all material planning and logistics requirements are addressed and all changes that affect the supply process are planned, executed, and communicated in a synchronized manner (e.g. capacity, bill of material [BOM], routings, effectiveness dates, supplier notification, scheduling, shipping). Back-up plans shall be in place to facilitate in the event of a natural disaster, geo-political risk (e.g. trade war, port closure).

3.1.1.2

The appraisal process is an opportunity for the manager and employee to discuss issues...

3.2.1.1

The SCM function shall formally participate in (e.g. sign-off for change) the Product Realization process (e.g. new product, engineering changes).

3.1.1.1

The organization has an active risk management process and associated response and recovery plans that could affect the ability to meet the customer's requirements in the event of a deviation from the normal business process. This could include EOL, transportation, packaging, equipment failure, etc.

3.2.1.1

The performance of the organization and SCM function is communicated to employees on a regular basis.

3.1.1

An active risk management process and associated response and recovery plans will ensure the organization's and customer's requirements are supported during a deviation or disruption from normal business processes. The process should mitigate the risk for both planned (e.g. tool/equipment maintenance, IT system updates, tool/equipment move) and unplanned (e.g. computer/communication failures, industrial disputes, transport and production disruption) events.

3.1.1.4

The organization shall develop policies regarding supply chain cyber security threats. Typical supply chain cyber security events for mitigating risks include losing access to closed servers, disconnecting critical machines from outside networks, and educating users on the threats and protective measures they can take, etc.

3.1.2

The performance of the organization and SCM function is communicated to employees on a schedule (e.g. monthly) and to notify the customer of any limitations in meeting the requirements.

3.2.1.4

If there are no back-up plans in place, the organization shall develop plans to ensure that the employee is...

3.1.2

The performance of the organization and SCM function is communicated to employees on a regular basis.

3.1.1

The performance of the organization and SCM function is communicated to employees on a regular basis.

3.1.1

The performance of the organization and SCM function is communicated to employees on a regular basis.

3.1.1
The SCM function shall participate in the capacity management process throughout the product life cycle. The customer's requirements regarding capacity planning management and communication are understood, incorporated, managed, and reviewed regularly including: customer/partner contract terms, capacity planning systems, logistics, storage, container fleet size, etc.

The SCM function shall participate in the capacity management process throughout the product life cycle. The customer's requirements regarding capacity planning management and communication are understood, incorporated, managed, and reviewed regularly including: customer/partner contract terms, capacity planning systems, logistics, storage, container fleet size, etc.

12.2.4 Requirement: The organization's capacity planning process has the capability to ensure that the product development process (PP&D) requirements are available in a timely manner to support customer requirements.

12.2.5 Requirement: The organization's capacity planning process should account for production, service, and PP&D requirements, to ensure that all requirements are met.

12.2.6 Requirement: The organization's capacity planning process should account for production, service, and PP&D requirements, to ensure that all requirements are met.

3.2.4.3 The operational parameters (e.g. transport time, lead times, inventory levels, packaging) for a process exist that uses forecast demand in the design of the pull system (e.g. Kanban loops).

3.3.1.4 Executive review and approval for all documentation in accordance with customer requirements.

3.3.1.3 Executive review and approval for all documentation in accordance with customer requirements.

The capacity planning process incorporates the customer's fabrication and material authorization systems for "phase-out" parts so that the production planning system generates forecast and shipping requirements in accordance with customer requirements.

The capacity planning process incorporates the customer's fabrication and material authorization systems for "phase-out" parts so that the production planning system generates forecast and shipping requirements in accordance with customer requirements.

As parts are moved from current production to service, purchase orders and other documents related to service/phase-out parts are reviewed to ensure customer requirements are met. Manufacturing records concerning personnel, equipment, tools, and/or other information in accordance with customer requirements.

As parts are moved from current production to service, purchase orders and other documents related to service/phase-out parts are reviewed to ensure customer requirements are met. Manufacturing records concerning personnel, equipment, tools, and/or other information in accordance with customer requirements.

The planning horizon and operational parameters (e.g. minimum order quantity, standard pack size, lot size) for service/phase-out parts are incorporated into the planning system to ensure customer requirements are met.

The planning horizon and operational parameters (e.g. minimum order quantity, standard pack size, lot size) for service/phase-out parts are incorporated into the planning system to ensure customer requirements are met.

A process exists that use forecast demand in the design of the pull system (e.g. Kanban loops). Pull systems/Kanban control the flow of resources in a production process. They are demand pull systems that regulate the flow of material in a manufacturing process, such as the purchase and/or overproduction of materials that would be obsolete.

Pull systems/Kanban control the flow of resources in a production process. They are demand pull systems that regulate the flow of material in a manufacturing process, such as the purchase and/or overproduction of materials that would be obsolete.

An effective production planning process integrates customer requirements with key operational parameters to support on-time delivery to the customer. The resulting plan should be both realistic and attainable.

An effective production planning process integrates customer requirements with key operational parameters to support on-time delivery to the customer. The resulting plan should be both realistic and attainable.

The production planning and scheduling system shall automatically integrate customer requirements throughout the planning and production schedules. The resulting plan should be both realistic and attainable.

The production planning and scheduling system shall automatically integrate customer requirements throughout the planning and production schedules. The resulting plan should be both realistic and attainable.

The production planning and scheduling system shall automatically integrate customer requirements throughout the planning and production schedules. The resulting plan should be both realistic and attainable.

The production planning and scheduling system shall automatically integrate customer requirements throughout the planning and production schedules. The resulting plan should be both realistic and attainable.

The production planning and scheduling system shall automatically integrate customer requirements throughout the planning and production schedules. The resulting plan should be both realistic and attainable.

The production planning and scheduling system shall automatically integrate customer requirements throughout the planning and production schedules. The resulting plan should be both realistic and attainable.

The planning horizon and operational parameters (e.g. minimum order quantity, standard pack size, lot size) for service/phase-out parts are reviewed and adjusted to avoid production over runs.

The planning horizon and operational parameters (e.g. minimum order quantity, standard pack size, lot size) for service/phase-out parts are reviewed and adjusted to avoid production over runs.

The operational parameters (e.g. transport time, lead times, inventory levels, packaging) for "phase-out" parts are reviewed and adjusted to avoid production over runs.

The operational parameters (e.g. transport time, lead times, inventory levels, packaging) for "phase-out" parts are reviewed and adjusted to avoid production over runs.

The production planning process supports lean manufacturing through the use of pull systems that regulate the flow of material in manufacturing processes. The product planning and scheduling system shall automatically integrate customer requirements throughout the planning and production schedules. The resulting plan should be both realistic and attainable.

The production planning process supports lean manufacturing through the use of pull systems that regulate the flow of material in manufacturing processes. The product planning and scheduling system shall automatically integrate customer requirements throughout the planning and production schedules. The resulting plan should be both realistic and attainable.

The planning horizon and operational parameters (e.g. minimum order quantity, standard pack size, lot size) for service/phase-out parts are reviewed and adjusted to avoid production over runs.

The planning horizon and operational parameters (e.g. minimum order quantity, standard pack size, lot size) for service/phase-out parts are reviewed and adjusted to avoid production over runs.

The planning horizon and operational parameters (e.g. minimum order quantity, standard pack size, lot size) for service/phase-out parts are reviewed and adjusted to avoid production over runs.

The planning horizon and operational parameters (e.g. minimum order quantity, standard pack size, lot size) for service/phase-out parts are reviewed and adjusted to avoid production over runs.

The production planning process supports lean manufacturing through the use of pull systems that regulate the flow of material in manufacturing processes. The product planning and scheduling system shall automatically integrate customer requirements throughout the planning and production schedules. The resulting plan should be both realistic and attainable.

The production planning process supports lean manufacturing through the use of pull systems that regulate the flow of material in manufacturing processes. The product planning and scheduling system shall automatically integrate customer requirements throughout the planning and production schedules. The resulting plan should be both realistic and attainable.

The planning horizon and operational parameters (e.g. minimum order quantity, standard pack size, lot size) for service/phase-out parts are reviewed and adjusted to avoid production over runs.

The planning horizon and operational parameters (e.g. minimum order quantity, standard pack size, lot size) for service/phase-out parts are reviewed and adjusted to avoid production over runs.

The operational parameters (e.g. transport time, lead times, inventory levels, packaging) for "phase-out" parts are reviewed and adjusted to avoid production over runs.
Deviations from customer requirements (e.g. quantity, transportation mode, packaging) shall be resolved with the appropriate customer contact prior to shipment time. The contact list comprises name, function, method of communication (e.g. office/mobile numbers, fax number, e-mail address, etc.), hours of availability, weekend and emergency contacts, and back-ups for each SCM function. The contact is able to communicate in the customer's preferred business language.

There is a documented process for reviewing and updating all contact lists (e.g. internal contact lists, customer contact lists) at regular intervals.

Why is this important?
Communicating customer requirements eliminates manual data entry errors and increases efficiency by conveying schedule information more quickly through the supply chain, thus reducing production time and cost. The reduction in administrative tasks (e.g. re-ordering customer schedule) allows resources to be more productive by working on other value-added activities.

The organization has the capability to electronically retrieve delivery forecasts and requirements via traditional EDI or web-based tools.

Why is this important?
Electronic transfer of data eliminates manual data entry errors and increases efficiency by conveying schedule information more quickly through the supply chain, thus reducing production time and cost. The reduction in administrative tasks (e.g. re-ordering customer schedule) allows resources to be more productive by working on other value-added activities.

The organization shall have a process to immediately communicate any potential problems that could impact the customer's operation, including a proposed corrective action.

Why is this important?
Notifying the customer immediately provides the parties with the opportunity to collaborate on a mutually acceptable solution to prevent interruptions in the delivery process.

The organization shall use all customer's business systems as required (e.g. inventory management, container management, capacity planning, supplier portals).

Why is this important?
Notifying the customer immediately provides the parties with the opportunity to collaborate on a mutually acceptable solution to prevent interruptions in the delivery process.

The production planning system is synchronized with all relevant internal (e.g. financial controls, production, transport, warehousing and 3rd party facilities) and external (e.g. external suppliers, customers) systems.

Why is this important?
Packaging and labeling solutions should support the efficient and flow of information and materials. Effective packaging facilitates efficient storage, transportation, and accessibility of parts while providing protection and preventing deterioration. Labeling allows for visual identification of material and supports automated data entry, thus increasing the accuracy of data into the production planning and inventory management systems.

The organization shall have a process in place to define and label packaging solutions for standard back-up packaging, including back-up parts, in conjunction with all involved parties and before the start of production. The process should define whether the packaging is supplied by the customer or supplier.

Why is this important?
Packaging and labeling solutions should support the efficient and flow of information and materials. Effective packaging facilitates efficient storage, transportation, and accessibility of parts while providing protection and preventing deterioration. Labeling allows for visual identification of material and supports automated data entry, thus increasing the accuracy of data into the production planning and inventory management systems.

The organization shall have a document procedure to develop and define labeling and packaging solutions for special and back-up packaging, including back-up parts, in conjunction with all involved parties and before the start of production. The process should define whether the packaging is supplied by the customer or supplier.

Why is this important?
Packaging and labeling solutions should support the efficient and flow of information and materials. Effective packaging facilitates efficient storage, transportation, and accessibility of parts while providing protection and preventing deterioration. Labeling allows for visual identification of material and supports automated data entry, thus increasing the accuracy of data into the production planning and inventory management systems.

The organization shall have a process in place to define and label packaging solutions for standard back-up packaging, including back-up parts, in conjunction with all involved parties and before the start of production. The process should define whether the packaging is supplied by the customer or supplier.

Why is this important?
Packaging and labeling solutions should support the efficient and flow of information and materials. Effective packaging facilitates efficient storage, transportation, and accessibility of parts while providing protection and preventing deterioration. Labeling allows for visual identification of material and supports automated data entry, thus increasing the accuracy of data into the production planning and inventory management systems.

The organization shall have a process in place to define and label packaging solutions for standard back-up packaging, including back-up parts, in conjunction with all involved parties and before the start of production. The process should define whether the packaging is supplied by the customer or supplier.

Why is this important?
Packaging and labeling solutions should support the efficient and flow of information and materials. Effective packaging facilitates efficient storage, transportation, and accessibility of parts while providing protection and preventing deterioration. Labeling allows for visual identification of material and supports automated data entry, thus increasing the accuracy of data into the production planning and inventory management systems.

The organization shall have a process in place to define and label packaging solutions for standard back-up packaging, including back-up parts, in conjunction with all involved parties and before the start of production. The process should define whether the packaging is supplied by the customer or supplier.

Why is this important?
Packaging and labeling solutions should support the efficient and flow of information and materials. Effective packaging facilitates efficient storage, transportation, and accessibility of parts while providing protection and preventing deterioration. Labeling allows for visual identification of material and supports automated data entry, thus increasing the accuracy of data into the production planning and inventory management systems.

The organization shall have a process in place to define and label packaging solutions for standard back-up packaging, including back-up parts, in conjunction with all involved parties and before the start of production. The process should define whether the packaging is supplied by the customer or supplier.

Why is this important?
Packaging and labeling solutions should support the efficient and flow of information and materials. Effective packaging facilitates efficient storage, transportation, and accessibility of parts while providing protection and preventing deterioration. Labeling allows for visual identification of material and supports automated data entry, thus increasing the accuracy of data into the production planning and inventory management systems.

The organization shall have a process in place to define and label packaging solutions for standard back-up packaging, including back-up parts, in conjunction with all involved parties and before the start of production. The process should define whether the packaging is supplied by the customer or supplier.

Why is this important?
Packaging and labeling solutions should support the efficient and flow of information and materials. Effective packaging facilitates efficient storage, transportation, and accessibility of parts while providing protection and preventing deterioration. Labeling allows for visual identification of material and supports automated data entry, thus increasing the accuracy of data into the production planning and inventory management systems.

The organization shall have a process in place to define and label packaging solutions for standard back-up packaging, including back-up parts, in conjunction with all involved parties and before the start of production. The process should define whether the packaging is supplied by the customer or supplier.

Why is this important?
Packaging and labeling solutions should support the efficient and flow of information and materials. Effective packaging facilitates efficient storage, transportation, and accessibility of parts while providing protection and preventing deterioration. Labeling allows for visual identification of material and supports automated data entry, thus increasing the accuracy of data into the production planning and inventory management systems.

The organization shall have a process in place to define and label packaging solutions for standard back-up packaging, including back-up parts, in conjunction with all involved parties and before the start of production. The process should define whether the packaging is supplied by the customer or supplier.

Why is this important?
Packaging and labeling solutions should support the efficient and flow of information and materials. Effective packaging facilitates efficient storage, transportation, and accessibility of parts while providing protection and preventing deterioration. Labeling allows for visual identification of material and supports automated data entry, thus increasing the accuracy of data into the production planning and inventory management systems.

The organization shall have a process in place to define and label packaging solutions for standard back-up packaging, including back-up parts, in conjunction with all involved parties and before the start of production. The process should define whether the packaging is supplied by the customer or supplier.

Why is this important?
Packaging and labeling solutions should support the efficient and flow of information and materials. Effective packaging facilitates efficient storage, transportation, and accessibility of parts while providing protection and preventing deterioration. Labeling allows for visual identification of material and supports automated data entry, thus increasing the accuracy of data into the production planning and inventory management systems.

The organization shall have a process in place to define and label packaging solutions for standard back-up packaging, including back-up parts, in conjunction with all involved parties and before the start of production. The process should define whether the packaging is supplied by the customer or supplier.

Why is this important?
Packaging and labeling solutions should support the efficient and flow of information and materials. Effective packaging facilitates efficient storage, transportation, and accessibility of parts while providing protection and preventing deterioration. Labeling allows for visual identification of material and supports automated data entry, thus increasing the accuracy of data into the production planning and inventory management systems.

The organization shall have a process in place to define and label packaging solutions for standard back-up packaging, including back-up parts, in conjunction with all involved parties and before the start of production. The process should define whether the packaging is supplied by the customer or supplier.

Why is this important?
Packaging and labeling solutions should support the efficient and flow of information and materials. Effective packaging facilitates efficient storage, transportation, and accessibility of parts while providing protection and preventing deterioration. Labeling allows for visual identification of material and supports automated data entry, thus increasing the accuracy of data into the production planning and inventory management systems.

The organization shall have a process in place to define and label packaging solutions for standard back-up packaging, including back-up parts, in conjunction with all involved parties and before the start of production. The process should define whether the packaging is supplied by the customer or supplier.

Why is this important?
Packaging and labeling solutions should support the efficient and flow of information and materials. Effective packaging facilitates efficient storage, transportation, and accessibility of parts while providing protection and preventing deterioration. Labeling allows for visual identification of material and supports automated data entry, thus increasing the accuracy of data into the production planning and inventory management systems.

The organization shall have a process in place to define and label packaging solutions for standard back-up packaging, including back-up parts, in conjunction with all involved parties and before the start of production. The process should define whether the packaging is supplied by the customer or supplier.

Why is this important?
Packaging and labeling solutions should support the efficient and flow of information and materials. Effective packaging facilitates efficient storage, transportation, and accessibility of parts while providing protection and preventing deterioration. Labeling allows for visual identification of material and supports automated data entry, thus increasing the accuracy of data into the production planning and inventory management systems.
4.2.1.4 | F1 | In-process, in-transit, withdrawal, storage, and shipping processes are considered when developing the customer packaging solution. | SAME | 4.2.1.4 | F1 | All applicable manufacturing, storage, and shipping processes are considered when developing the customer packaging solution. | REMOVED |

4.2.2 | Requirement: | The organization has procedures and/or work instructions for the container management process to ensure availability of customer-approved containers (i.e. reusable and expendable) to support the material flow requirements. | SAME | 4.2.2 | Requirement: | The organization has procedures and/or work instructions for the container management process to ensure availability of customer-approved containers (i.e. reusable and expendable) to support the material flow requirements. | SAME |

4.2.2.1 | F2 | A process is in place to ensure that customer-supplied packaging is properly stored and managed based on customer requirements. | SAME | 4.2.2.1 | F2 | The process ensures that customer-supplied packaging is properly stored and managed based on customer requirements. | SAME |

4.3.1 | Requirement: | The organization has a shipping process that ensures dock operations are optimized and the quantity shipped reconciles with the customer’s requirements. | SAME | 4.3.1 | Requirement: | The organization has a process to ensure transport documents are completed according to customer, industry, and government/international standards. Additionally, Advanced Shipping Notices (ASNs) are accurate and transmitted in a timely manner. | REMOVED |

4.3.1.1 | F3 | Dock operations are optimized taking into consideration capacity of preparation areas, equipment utilized, working capacities, equipment availability, and labor availability. | SAME | 4.3.1.1 | F3 | Dock operations are optimized taking into consideration capacity of preparation areas, equipment utilized, working capacities, equipment availability, and labor availability. | SAME |

4.3.2 | Requirement: | The process ensures that customer-supplied packaging is calibrated and inspected at planned intervals. | SAME | 4.3.2 | Requirement: | The process ensures that customer-supplied packaging is calibrated and inspected at planned intervals. | SAME |

4.3.2.1 | F3 | The process ensures that customer-supplied packaging is calibrated and inspected at planned intervals. | SAME | 4.3.2.1 | F3 | The process ensures that customer-supplied packaging is calibrated and inspected at planned intervals. | SAME |

4.3.2.2 | F2 | A process is in place and agreed by all parties for the procurement, allocation, and monitoring of all packaging material (e.g. returnable containers, expendable packaging, drayage, spotters) the process includes a commercial agreement for back-up packaging. | CHANGED | 4.3.2.2 | F2 | A process is in place and agreed by all parties for the procurement, allocation, and monitoring of all packaging material (e.g. returnable containers, expendable packaging, drayage, spotters) the process includes a commercial agreement for back-up packaging. | SAME |

4.3.2.3 | F2 | A process is in place and agreed by all parties for the procurement, allocation, and monitoring of all packaging material (e.g. returnable containers, expendable packaging, drayage, spotters) the process includes a commercial agreement for back-up packaging. | CHANGED | 4.3.2.3 | F2 | A process is in place and agreed by all parties for the procurement, allocation, and monitoring of all packaging material (e.g. returnable containers, expendable packaging, drayage, spotters) the process includes a commercial agreement for back-up packaging. | SAME |

4.3.3 | Requirement: | The organization has a contingency plan for transportation failures (e.g. alternative methods of transport). | SAME | 4.3.3 | Requirement: | The organization has a contingency plan for transportation failures (e.g. alternative methods of transport). | SAME |

4.3.3.1 | F2 | The organization has a process to measure and improve overall customer satisfaction. | SAME | 4.3.3.1 | F2 | The organization has a process to measure and improve overall customer satisfaction. | SAME |

4.4.1 | Requirement: | Transportation planning is initiated at the beginning of the product life cycle and the carrier, LSP, and/or LUP is involved as early as possible (e.g. product development process). | SAME | 4.4.1 | Requirement: | Transportation planning is initiated at the beginning of the product life cycle and the carrier, LSP, and/or LUP is involved as early as possible (e.g. product development process). | SAME |

4.4.1.1 | F3 | Transportation planning is initiated at the beginning of the product life cycle and the carrier, LSP, and/or LUP is involved as early as possible (e.g. product development process). | SAME | 4.4.1.1 | F3 | Transportation planning is initiated at the beginning of the product life cycle and the carrier, LSP, and/or LUP is involved as early as possible (e.g. product development process). | SAME |

4.4.1.2 | F2 | The organization has a process to measure and monitor carrier activity and performance requirements. | SAME | 4.4.1.2 | F2 | The organization has a process to measure and monitor carrier activity and performance requirements. | SAME |

4.4.1.3 | F2 | The organization has a process to measure and monitor carrier activity and performance requirements. | SAME | 4.4.1.3 | F2 | The organization has a process to measure and monitor carrier activity and performance requirements. | SAME |

4.4.1.4 | F2 | The organization has a process to measure and monitor carrier activity and performance requirements. | SAME | 4.4.1.4 | F2 | The organization has a process to measure and monitor carrier activity and performance requirements. | SAME |

4.5.1 | Requirement: | The organization has a process to measure and improve overall customer satisfaction. | SAME | 4.5.1 | Requirement: | The organization has a process to measure and improve overall customer satisfaction. | SAME |
The organization shall have a process to minimize lead time and costs while creating flexibility within the supply chain. Along with this, there is a need to move parts from one location to another, so there will be the opportunity to eliminate waste in the material flow process.

Why is this important?

The primary objective of a lean manufacturing/material flow process is to minimize lead time and costs while creating flexibility within the supply chain. The process considers all factors influencing lead time (e.g., material availability, process capabilities, internal transport, and warehousing layout), internal transport and warehousing layout, customer safety stock requirements, different industrial calendars, etc. The organization has a process to continually evaluate and, if necessary, adjust any impacted inventory levels, color coding, FIFO boards, monitors, etc.

5.2.5 Requirement: The organization has a process to continually evaluate and optimize inventory buffers.

SAME

5.2.6 Requirement: The organization has a process to continually evaluate and optimize inventory. Why is this important?

The process considers all factors influencing lead time (e.g., material availability, process capabilities, internal transport, and warehousing layout, customer safety stock requirements, different industrial calendars, etc. The organization has a process to continually evaluate and optimize inventory. Why is this important?

The process considers all factors influencing lead time (e.g., material availability, process capabilities, internal transport, and warehousing layout, customer safety stock requirements, different industrial calendars, etc. The organization has a process to continually evaluate and optimize inventory. Why is this important?

The process considers all factors influencing lead time (e.g., material availability, process capabilities, internal transport, and warehousing layout, customer safety stock requirements, different industrial calendars, etc. The organization has a process to continually evaluate and optimize inventory. Why is this important?

The process considers all factors influencing lead time (e.g., material availability, process capabilities, internal transport, and warehousing layout, customer safety stock requirements, different industrial calendars, etc. The organization has a process to continually evaluate and optimize inventory. Why is this important?

The process considers all factors influencing lead time (e.g., material availability, process capabilities, internal transport, and warehousing layout, customer safety stock requirements, different industrial calendars, etc. The organization has a process to continually evaluate and optimize inventory. Why is this important?

The process considers all factors influencing lead time (e.g., material availability, process capabilities, internal transport, and warehousing layout, customer safety stock requirements, different industrial calendars, etc. The organization has a process to continually evaluate and optimize inventory. Why is this important?

The process considers all factors influencing lead time (e.g., material availability, process capabilities, internal transport, and warehousing layout, customer safety stock requirements, different industrial calendars, etc. The organization has a process to continually evaluate and optimize inventory. Why is this important?

The process considers all factors influencing lead time (e.g., material availability, process capabilities, internal transport, and warehousing layout, customer safety stock requirements, different industrial calendars, etc. The organization has a process to continually evaluate and optimize inventory. Why is this important?

The process considers all factors influencing lead time (e.g., material availability, process capabilities, internal transport, and warehousing layout, customer safety stock requirements, different industrial calendars, etc. The organization has a process to continually evaluate and optimize inventory. Why is this important?

The process considers all factors influencing lead time (e.g., material availability, process capabilities, internal transport, and warehousing layout, customer safety stock requirements, different industrial calendars, etc. The organization has a process to continually evaluate and optimize inventory. Why is this important?

The process considers all factors influencing lead time (e.g., material availability, process capabilities, internal transport, and warehousing layout, customer safety stock requirements, different industrial calendars, etc. The organization has a process to continually evaluate and optimize inventory. Why is this important?

The process considers all factors influencing lead time (e.g., material availability, process capabilities, internal transport, and warehousing layout, customer safety stock requirements, different industrial calendars, etc. The organization has a process to continually evaluate and optimize inventory. Why is this important?

The process considers all factors influencing lead time (e.g., material availability, process capabilities, internal transport, and warehousing layout, customer safety stock requirements, different industrial calendars, etc. The organization has a process to continually evaluate and optimize inventory. Why is this important?

The process considers all factors influencing lead time (e.g., material availability, process capabilities, internal transport, and warehousing layout, customer safety stock requirements, different industrial calendars, etc. The organization has a process to continually evaluate and optimize inventory. Why is this important?

The process considers all factors influencing lead time (e.g., material availability, process capabilities, internal transport, and warehousing layout, customer safety stock requirements, different industrial calendars, etc. The organization has a process to continually evaluate and optimize inventory. Why is this important?

The process considers all factors influencing lead time (e.g., material availability, process capabilities, internal transport, and warehousing layout, customer safety stock requirements, different industrial calendars, etc. The organization has a process to continually evaluate and optimize inventory. Why is this important?

The process considers all factors influencing lead time (e.g., material availability, process capabilities, internal transport, and warehousing layout, customer safety stock requirements, different industrial calendars, etc. The organization has a process to continually evaluate and optimize inventory. Why is this important?

The process considers all factors influencing lead time (e.g., material availability, process capabilities, internal transport, and warehousing layout, customer safety stock requirements, different industrial calendars, etc. The organization has a process to continually evaluate and optimize inventory. Why is this important?

The process considers all factors influencing lead time (e.g., material availability, process capabilities, internal transport, and warehousing layout, customer safety stock requirements, different industrial calendars, etc. The organization has a process to continually evaluate and optimize inventory. Why is this important?

The process considers all factors influencing lead time (e.g., material availability, process capabilities, internal transport, and warehousing layout, customer safety stock requirements, different industrial calendars, etc. The organization has a process to continually evaluate and optimize inventory. Why is this important?

The process considers all factors influencing lead time (e.g., material availability, process capabilities, internal transport, and warehousing layout, customer safety stock requirements, different industrial calendars, etc. The organization has a process to continually evaluate and optimize inventory. Why is this important?

The process considers all factors influencing lead time (e.g., material availability, process capabilities, internal transport, and warehousing layout, customer safety stock requirements, different industrial calendars, etc. The organization has a process to continually evaluate and optimize inventory. Why is this important?

The process considers all factors influencing lead time (e.g., material availability, process capabilities, internal transport, and warehousing layout, customer safety stock requirements, different industrial calendars, etc. The organization has a process to continually evaluate and optimize inventory. Why is this important?

The process considers all factors influencing lead time (e.g., material availability, process capabilities, internal transport, and warehousing layout, customer safety stock requirements, different industrial calendars, etc. The organization has a process to continually evaluate and optimize inventory. Why is this important?
5.2.6
The SCM function participates in the selection process for suppliers, subcontractors, and service providers.

Why is this important?
During engineering change and product phase-out, it is imperative to know and respond to the level of stock in the whole supply chain to ensure customer requirements are met while avoiding the risk of obsolescence, waste, and cost.

5.2.6.1 F2
To minimize obsolescence, the organization has a process in place to manage physical inventories of “phase-out” parts which reduces the level of stock (e.g., final product, WIP, raw material).

SAME
5.2.6.1 F2
To minimize obsolescence, the organization has a process in place to manage physical inventories of “phase-out” parts which reduces the level of stock (e.g., final product, WIP, raw material).

SAME
5.2.6.2 F2
The organization has a process in place to manage “phase-out” parts with suppliers.

SAME
5.2.6.2 F2
The organization has a process in place to manage “phase-out” parts with suppliers.

SAME

5.2.7
The SCM function shall have a process in place to identify and report defective or obsolete material in a timely manner. This process shall ensure that defective or obsolete material is segregated, traced, and/or disposed of properly in order to minimize cost.

Why is this important?
The process for handling defective or obsolete parts shall ensure material is segregated from production to prevent unauthorized reusing or disposal of material.

5.2.7.1 F3
The organization shall have a process in place that ensures all defective or obsolete material is segregated, traced, and/or disposed of properly in order to minimize cost.

CHANGED
5.2.7.1 F3
The organization shall have a process in place that ensures all defective or obsolete material is segregated, traced, and/or disposed of properly in order to minimize cost.

CHANGED

5.3
The organization shall have a documented process for managing engineering change throughout the supply chain.

5.3.1
The organization shall have a documented process for managing engineering change throughout the supply chain.

SAME
5.3.1
The organization shall have a documented process for managing engineering change throughout the supply chain.

SAME

5.3.2
The organization has a process in place to manage “phase-out” parts with suppliers.

SAME
5.3.2
The organization has a process in place to manage “phase-out” parts with suppliers.

SAME

5.3.3
The organization has a process in place to manage “phase-out” parts with suppliers.

SAME
5.3.3
The organization has a process in place to manage “phase-out” parts with suppliers.

SAME

5.3.4
Reasonable Steps for Change Management

5.3.4.1
There are procedures and work instructions in place to manage and record a tool’s life cycle (e.g., current status, wear history, ownership, customer authorizations, part assignment, part branding, release number) to ensure customer requirements can be met for current and/or past model parts.

SAME
5.3.4.1
There are procedures and work instructions in place to manage and record a tool’s life cycle (e.g., current status, wear history, ownership, customer authorizations, part assignment, part branding, release number) to ensure customer requirements can be met for current and/or past model parts.

SAME

5.3.4.2 F1
The SCM function participates in the process to determine when a tool is no longer required and tooling disposal can take place.

SAME
5.3.4.2 F1
The SCM function participates in the process to determine when a tool is no longer required and tooling disposal can take place.

SAME

5.3.4.3 F1
For each deviation, a corrective action and a time plan is to be in place to return to the original or superseding specification, including allocation to all relevant personnel of the start and end date following approval.

SAME
5.3.4.3 F1
For each deviation, a corrective action and a time plan is to be in place to return to the original or superseding specification, including allocation to all relevant personnel of the start and end date following approval.

SAME

5.3.4.4 F1
A lot or serial traceability process shall be in place, as required, which meets customer, industry, government, and/or international standards. This may involve traceability of operations and/or individual part/serial number for all stages of inventory (finished goods, WIP, raw material).

SAME
5.3.4.4 F1
A lot or serial traceability process shall be in place, as required, which meets customer, industry, government, and/or international standards. This may involve traceability of operations and/or individual part/serial number for all stages of inventory (finished goods, WIP, raw material).

SAME

5.3.5
Reasonable Steps for Change Management

5.3.5.1.
There is a process in place to obtain written customer authorization at the level of stock (e.g., final product, WIP, raw material).

SAME
5.3.5.1.
There is a process in place to obtain written customer authorization at the level of stock (e.g., final product, WIP, raw material).

SAME

5.3.5.2
For each deviation, a corrective action and a time plan is to be in place to return to the original or superseding specification, including allocation to all relevant personnel of the start and end date following approval.

SAME
5.3.5.2
For each deviation, a corrective action and a time plan is to be in place to return to the original or superseding specification, including allocation to all relevant personnel of the start and end date following approval.

SAME

5.3.5.3
A lot or serial traceability process shall be in place, as required, which meets customer, industry, government, and/or international standards. This may involve traceability of operations and/or individual part/serial number for all stages of inventory (finished goods, WIP, raw material).

SAME
5.3.5.3
A lot or serial traceability process shall be in place, as required, which meets customer, industry, government, and/or international standards. This may involve traceability of operations and/or individual part/serial number for all stages of inventory (finished goods, WIP, raw material).

SAME

5.3.5.4
There is a process in place to obtain written customer authorization at the level of stock (e.g., final product, WIP, raw material).

SAME
5.3.5.4
There is a process in place to obtain written customer authorization at the level of stock (e.g., final product, WIP, raw material).

SAME

5.3.6
Requirements

5.3.6.1
The selection of capable and agile suppliers who can demonstrate their ability to manage quality, cost, and delivery performance is extremely important in the development of an effective and efficient supply chain.

SAME
5.3.6.1
The selection of capable and agile suppliers who can demonstrate their ability to manage quality, cost, and delivery performance is extremely important in the development of an effective and efficient supply chain.

SAME

5.3.6.2 F1
A formal SCM agreement (e.g., terms and conditions, supplier manual) in place specifying the conditions of the relationship and is agreed by all parties before the first delivery, deviations from the SCM agreement are immediately investigated, communicated, and rectified.

SAME
5.3.6.2 F1
A formal SCM agreement (e.g., terms and conditions, supplier manual) in place specifying the conditions of the relationship and is agreed by all parties before the first delivery, deviations from the SCM agreement are immediately investigated, communicated, and rectified.

SAME

5.3.6.3 F1
The organization has a process in place to manage inventories of “phase-out” parts (e.g., those affected by engineering changes and programs that are being phased out) with both supplier and customer to minimize obsolescence.

SAME
5.3.6.3 F1
The organization has a process in place to manage inventories of “phase-out” parts (e.g., those affected by engineering changes and programs that are being phased out) with both supplier and customer to minimize obsolescence.

SAME

5.4
When is this important?
The day-to-day operational relationship shall be properly defined and documented in order to clarify roles and responsibilities, expectations, and commitments and to avoid the possibility of misunderstandings and conflict. Use of the AIAG/Odette Global Materials Management and Logistics Agreement (GMMLA) or equivalent is recommended.

5.4.1
A formal Supply Chain Management (SCM) Agreement shall exist with suppliers, subcontractors, and service providers.

SAME
5.4.1
A formal Supply Chain Management (SCM) Agreement shall exist with suppliers, subcontractors, and service providers.

SAME

5.4.2
The SCM function participates in the selection process for suppliers, subcontractors, and service providers.

SAME
5.4.2
The SCM function participates in the selection process for suppliers, subcontractors, and service providers.

SAME

5.4.3
There is a process in place to obtain written customer authorization at the level of stock (e.g., final product, WIP, raw material).

SAME
5.4.3
There is a process in place to obtain written customer authorization at the level of stock (e.g., final product, WIP, raw material).

SAME

5.4.4
The SCM function participates in the process to determine when a tool is no longer required and tooling disposal can take place.

SAME
5.4.4
The SCM function participates in the process to determine when a tool is no longer required and tooling disposal can take place.

SAME

5.4.5
A lot or serial traceability process shall be in place, as required, which meets customer, industry, government, and/or international standards. This may involve traceability of operations and/or individual part/serial number for all stages of inventory (finished goods, WIP, raw material).

SAME
5.4.5
A lot or serial traceability process shall be in place, as required, which meets customer, industry, government, and/or international standards. This may involve traceability of operations and/or individual part/serial number for all stages of inventory (finished goods, WIP, raw material).

SAME

5.4.6 F1
The organization has a process in place to manage inventories of “phase-out” parts (e.g., those affected by engineering changes and programs that are being phased out) with both supplier and customer to minimize obsolescence.

SAME
5.4.6 F1
The organization has a process in place to manage inventories of “phase-out” parts (e.g., those affected by engineering changes and programs that are being phased out) with both supplier and customer to minimize obsolescence.

SAME

5.6
The organization has a process in place to manage physical inventories of “phase-out” parts which reduces the level of stock (e.g., final product, WIP, raw material).

SAME
5.6
The organization has a process in place to manage physical inventories of “phase-out” parts which reduces the level of stock (e.g., final product, WIP, raw material).

SAME

5.7
The SCM function shall have a process in place to identify and report defective or obsolete material in a timely manner. This process shall ensure that defective or obsolete material is segregated, traced, and/or disposed of properly in order to minimize cost.

Why is this important?
The process for handling defective or obsolete parts shall ensure material is segregated from production to prevent unauthorized reusing or disposal of material.

5.7.1
The organization shall have a process in place to manage “phase-out” parts with suppliers.

SAME
5.7.1
The organization shall have a process in place to manage “phase-out” parts with suppliers.

SAME

5.7.2
The organization has a documented process involving the SCM function for the selection process for suppliers, subcontractors, and service providers.

SAME
5.7.2
The organization has a documented process involving the SCM function for the selection process for suppliers, subcontractors, and service providers.

SAME

5.7.3
The organization shall have a process in place to manage inventories of “phase-out” parts (e.g., those affected by engineering changes and programs that are being phased out) with both supplier and customer to minimize obsolescence.

SAME
5.7.3
The organization shall have a process in place to manage inventories of “phase-out” parts (e.g., those affected by engineering changes and programs that are being phased out) with both supplier and customer to minimize obsolescence.

SAME
4.3.2 F2 A process in place to ensure the SCM agreement is regularly reviewed and revised as necessary.

4.3.3 F1 The methodology or processes for communication with suppliers, subcontractors, and service providers must be documented in order to clarify roles and responsibilities, expectations, and commitments, and to avoid the possibility of misunderstanding and conflict.

4.3.4 F1 The organization has a process in place to develop and define labeling and packaging solutions to support the efficient flow and identification of material. Effective packaging facilitates efficient storage, transportation, and accessibility of parts while providing protection and preventing deterioration. Labeling allows for visual identification of material and supports automated data entry, thus increasing the accuracy of data into the production planning and inventory management systems.

4.3.4 F1 The organization shall require its suppliers to develop contingency plans that would be implemented in the event of a deviation or disruption from the normal business process. This includes EDI, transportation, packaging, labeling, and shipping specifications.

4.3.4 F1 The organization has a process in place to develop and define labeling and packaging solutions to support the efficient flow and identification of material. Effective packaging facilitates efficient storage, transportation, and accessibility of parts while providing protection and preventing deterioration. Labeling allows for visual identification of material and supports automated data entry, thus increasing the accuracy of data into the production planning and inventory management systems.

4.3.4 F1 The organization has a process in place to develop and define labeling and packaging solutions to support the efficient flow and identification of material. Effective packaging facilitates efficient storage, transportation, and accessibility of parts while providing protection and preventing deterioration. Labeling allows for visual identification of material and supports automated data entry, thus increasing the accuracy of data into the production planning and inventory management systems.

4.3.4 F1 The organization has a process in place to develop and define labeling and packaging solutions to support the efficient flow and identification of material. Effective packaging facilitates efficient storage, transportation, and accessibility of parts while providing protection and preventing deterioration. Labeling allows for visual identification of material and supports automated data entry, thus increasing the accuracy of data into the production planning and inventory management systems.
6.5.1 Requirement: There is a process in place to ensure effective and efficient transportation of inbound material in compliance with customer, industry, and government/international requirements.

SAME 6.5.1 Requirement: There is a process in place to ensure effective and efficient transportation of inbound material in compliance with customer, industry, and government/international requirements.

WHY IS THIS IMPORTANT?
An efficient and effective inbound transportation process provides the means for material to be delivered on-time, uninterrupted, and undamaged, and at minimum cost. Considerations within the assessment process should also include environmental aspects, customer requirements, supply chain security, and performance measurements (examples available in Odette’s Key Performance Indicators for Carriers and LLP guidelines).

SAME

6.5.1.1 Why is this important?
An efficient and effective inbound transportation process provides the means for material to be delivered on-time, uninterrupted, and undamaged, and at minimum cost. Considerations within the assessment process should also include environmental aspects, customer requirements, supply chain security, and performance measurements (examples available in Odette’s Key Performance Indicators for Carriers and LLP guidelines).

SAME

6.5.1.2 Why is this important?
An efficient and effective inbound transportation process provides the means for material to be delivered on-time, uninterrupted, and undamaged, and at minimum cost. Considerations within the assessment process should also include environmental aspects, customer requirements, supply chain security, and performance measurements (examples available in Odette’s Key Performance Indicators for Carriers and LLP guidelines).

SAME

6.5.1.3 Why is this important?
An efficient and effective inbound transportation process provides the means for material to be delivered on-time, uninterrupted, and undamaged, and at minimum cost. Considerations within the assessment process should also include environmental aspects, customer requirements, supply chain security, and performance measurements (examples available in Odette’s Key Performance Indicators for Carriers and LLP guidelines).

SAME

6.5.1.4 Why is this important?
An efficient and effective inbound transportation process provides the means for material to be delivered on-time, uninterrupted, and undamaged, and at minimum cost. Considerations within the assessment process should also include environmental aspects, customer requirements, supply chain security, and performance measurements (examples available in Odette’s Key Performance Indicators for Carriers and LLP guidelines).

SAME

6.6.1 Requirement: There is a process in place to ensure effective management of the material receiving process, including sufficient capacity and appropriate equipment.

SAME 6.6.1 Requirement: There is a process in place to ensure effective management of the material receiving process, including sufficient capacity and appropriate equipment.

WHY IS THIS IMPORTANT?
Efficient management of the material receiving process is necessary to facilitate effective material flow and ensure the activity does not become a bottleneck.

SAME

6.6.1.1 Why is this important?
Efficient management of the material receiving process is necessary to facilitate effective material flow and ensure the activity does not become a bottleneck.

SAME

6.6.1.2 Why is this important?
Efficient management of the material receiving process is necessary to facilitate effective material flow and ensure the activity does not become a bottleneck.

SAME

6.6.1.3 Why is this important?
Efficient management of the material receiving process is necessary to facilitate effective material flow and ensure the activity does not become a bottleneck.

SAME

6.6.1.4 Why is this important?
Efficient management of the material receiving process is necessary to facilitate effective material flow and ensure the activity does not become a bottleneck.

SAME

6.6.2 Requirement: There is a process in place to verify the accuracy of the labeling and shipping documentation at the point of receipt.

SAME 6.6.2 Requirement: There is a process in place to verify the accuracy of the labeling and shipping documentation at the point of receipt.

WHY IS THIS IMPORTANT?
Accurate labeling and shipping documentation support the identification and efficient flow of material. Mislabelled or incomplete documentation can result in premium freight and production disruption and may impact delivery to the organization’s customer. When discrepancies are found, it is important for the organization to work with the suppliers, subcontractors, and/or service providers to develop corrective actions that prevent recurrence.

SAME

6.6.2.1 Why is this important?
Accurate labeling and shipping documentation support the identification and efficient flow of material. Mislabelled or incomplete documentation can result in premium freight and production disruption and may impact delivery to the organization’s customer. When discrepancies are found, it is important for the organization to work with the suppliers, subcontractors, and/or service providers to develop corrective actions that prevent recurrence.

SAME

6.6.2.2 Why is this important?
Accurate labeling and shipping documentation support the identification and efficient flow of material. Mislabelled or incomplete documentation can result in premium freight and production disruption and may impact delivery to the organization’s customer. When discrepancies are found, it is important for the organization to work with the suppliers, subcontractors, and/or service providers to develop corrective actions that prevent recurrence.

SAME

6.6.2.3 Why is this important?
Accurate labeling and shipping documentation support the identification and efficient flow of material. Mislabelled or incomplete documentation can result in premium freight and production disruption and may impact delivery to the organization’s customer. When discrepancies are found, it is important for the organization to work with the suppliers, subcontractors, and/or service providers to develop corrective actions that prevent recurrence.

SAME

6.6.2.4 Why is this important?
Accurate labeling and shipping documentation support the identification and efficient flow of material. Mislabelled or incomplete documentation can result in premium freight and production disruption and may impact delivery to the organization’s customer. When discrepancies are found, it is important for the organization to work with the suppliers, subcontractors, and/or service providers to develop corrective actions that prevent recurrence.

SAME

6.6.2.5 Why is this important?
Accurate labeling and shipping documentation support the identification and efficient flow of material. Mislabelled or incomplete documentation can result in premium freight and production disruption and may impact delivery to the organization’s customer. When discrepancies are found, it is important for the organization to work with the suppliers, subcontractors, and/or service providers to develop corrective actions that prevent recurrence.

SAME

6.7.1 Requirement: There is a process in place to ensure effective and efficient transportation of inbound material in compliance with customer, industry, and government/international requirements.

SAME 6.7.1 Requirement: There is a process in place to ensure effective and efficient transportation of inbound material in compliance with customer, industry, and government/international requirements.

WHY IS THIS IMPORTANT?
A formal process for assessing and monitoring supplier capability and performance provides the means to support the organization’s SCM strategy, identify opportunities for improvement, and to make a valuable contribution to the achievement of high levels of customer satisfaction.

SAME

6.7.1.1 Why is this important?
A formal process for assessing and monitoring supplier capability and performance provides the means to support the organization’s SCM strategy, identify opportunities for improvement, and to make a valuable contribution to the achievement of high levels of customer satisfaction.

SAME

6.7.1.2 Why is this important?
A formal process for assessing and monitoring supplier capability and performance provides the means to support the organization’s SCM strategy, identify opportunities for improvement, and to make a valuable contribution to the achievement of high levels of customer satisfaction.

SAME

6.7.1.3 Why is this important?
A formal process for assessing and monitoring supplier capability and performance provides the means to support the organization’s SCM strategy, identify opportunities for improvement, and to make a valuable contribution to the achievement of high levels of customer satisfaction.

SAME

6.7.1.4 Why is this important?
A formal process for assessing and monitoring supplier capability and performance provides the means to support the organization’s SCM strategy, identify opportunities for improvement, and to make a valuable contribution to the achievement of high levels of customer satisfaction.

SAME